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Abstract
Cats are obligate carnivores and under most circumstances eat only animal products.

Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are

indifferent to sweeteners, presumably having no need to detect plant-based sugars in their

diet. Following this reasoning and a recent report of a positive correlation between the pro-

portion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate spe-

cies, we tested the hypothesis that if bitter perception exists primarily to protect animals

from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have

lost functional bitter receptors and they should also have reduced bitter receptor function.

To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based

assays. We found that they have at least 7 functional receptors with distinct receptive

ranges, showing many similarities, along with some differences, with human bitter recep-

tors. To provide a comparative perspective, we compared the cat repertoire of intact recep-

tors with those of a restricted number of members of the order Carnivora, with a range of

dietary habits as reported in the literature. The numbers of functional bitter receptors in the

terrestrial Carnivora we examined, including omnivorous and herbivorous species, were

roughly comparable to that of cats thereby providing no strong support for the hypothesis

that a strict meat diet influences bitter receptor number or function. Maintenance of bitter

receptor function in terrestrial obligate carnivores may be due to the presence of bitter com-

pounds in vertebrate and invertebrate prey, to the necessary role these receptors play in

non-oral perception, or to other unknown factors. We also found that the two aquatic Carniv-

ora species examined had fewer intact bitter receptors. Further comparative studies of fac-

tors driving numbers and functions of bitter taste receptors will aid in understanding the

forces shaping their repertoire.

Introduction
The so-called basic tastes (e.g., sweet and bitter) have traditionally been presumed to have
evolved to ensure that animals consume an appropriate source of calories while avoiding toxic
compounds [1, 2]. Although most mammals avidly consume sugars, obligate carnivores such
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as meat-eating cats are indifferent to them, and one component of their sweet taste receptor
gene repertoire (Tas1r2) is a pseudogene. This loss has happened independently in several obli-
gate carnivore species in the order Carnivora [3], presumably because there is no need to detect
sweet sugars from plants. It appears that all birds have lost the Tas1r2 taste receptor gene after
birds and non-avian reptiles diverged but some birds (e.g., hummingbirds) consume foods that
consist primarily of sugars [4]. It was recently discovered that the nectar-eating hummingbirds
have repurposed their amino acid Tas1r1/Tas1r3 receptor to detect sugars [4].

Bitter taste may provide another source of comparative evidence for an intimate relation-
ship between diet and taste sensitivity (e.g., number of compounds and range of concentra-
tions). Compounds that taste bitter to humans (hereafter “bitter compounds”) are widely
rejected throughout the animal kingdom. It is thought that rejection is based on a mutual inter-
action between plants that do not “want” to be eaten and animals that do not “want” to be poi-
soned. A similar logic may pertain to avoidance of bitter-tasting invertebrates, reptiles and
amphibians although the evidence for the extent to which cats may be exposed to such bitter-
ness in prey as compared with exposure to plant-based bitter compounds for species that con-
sume plants is unclear. Glendinning has argued that the relative occurrence of bitter and
potentially toxic foods is lower for carnivores than for omnivores and herbivores [5].

Li and Zhang [6] have recently described a relationship between diet and the number of
Tas2r genes from 54 diverse vertebrate species. Based on correlational analyses, they reported
that species that tend to eat more plant food have more intact bitter receptors than species that
eat little or no plant food. However, the number of functional bitter receptors may not be the
only factor determining the importance of bitter taste in a species diet. For example, a species
could be highly responsive to bitterness if it had a few bitter receptors that were responsive to
many different bitter compounds (broadly “tuned”) as has recently been reported for the
chicken [7]. Nevertheless, given the vast potential array of bitter and toxic compounds, it is
hard to imagine that a few receptors could detect many or all of them. And indeed, species dif-
fer greatly in bitter receptor number. There must be a selective reason for the existence of mul-
tiple bitter receptors, particularly in light of the relative paucity of taste receptors for other
modalities such as sweet, umami and probably salty and sour [1, 2].

As an initial approach to the study of bitter receptor number and function in obligate carni-
vores, we evaluated bitter taste receptor function in a single meat-eating obligate carnivore, the
domestic cat (Felis catus), by expressing the receptors in cell-based assays to test their function.
This strategy ensures that genes that appear to be intact by computational methods are actually
functional. It also allows us to test the breadth of tuning which cannot currently be predicted
with in silicomethods. We chose the domestic cat for this study since much work has been
done on sweet taste receptors in cats [8, 9] and because of the inherent interest in factors influ-
encing feeding in this companion animal. We also sought to provide a comparative perspective
by examining the broader pattern of bitter receptor number in a single order, Carnivora, in
light of the question concerning the functional significance of bitter receptors in obligate
carnivores.

Results

Domestic cats have at least seven functional bitter taste receptors
The results of nucleotide sequence searches of the feline genome indicate a total of 12 intact
Tas2r receptor genes. Using cat Tas2r-specific primers, we amplified the entire coding regions
of 10 of the 12 cat Tas2r receptors and inserted these receptor sequences into an expression
cloning vector pCDNA3.1 (S1 Table). Two of the 12 receptors could not be amplified from
feline DNA using primer sets designed to amplify the entire coding regions (Tas2r1 and
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Tas2r43). We expressed the 10 bitter taste receptors with a coupling chimeric G protein
(Gα16-gust44) in a heterologous system. For bitter taste stimuli, we chose 25 commercially
available compounds, eight derived from plants, that activate human bitter taste receptors [10].
For each compound, mock-transfected cells were used as negative controls (see Methods).

Bitter receptors differed in the number of compounds that elicited a response. Some recep-
tors appeared to be broadly tuned, such as Tas2r2 and Tas2r46 (Figs 1A, 1F, 2A and 2F), some
appeared to have an intermediate range of tuning (e.g., Tas2r4, Figs 1B and 2B; Tas2r7; Figs
1C and 2C; Tas2r67, Figs 1G and 2G), and some seemed to be narrowly tuned (e.g., Tas2r12;
Figs 1D and 2D; Tas2r38; Figs 1E and 2E). Three of the bitter receptors (Tas2r3, Tas2r9, and
Tas2r42) showed no responses to any of 25 compounds tested (S2 Table) although this is not
evidence that they are not functional; it is likely that in our small repertoire of bitter com-
pounds tested we did not include those that activate these receptors.

To confirm the validity of receptor responses, dose-dependent curves were obtained for a
subset of Tas2r receptors and compounds. The Tas2r38 receptor responded to its ligand phen-
ylthiocarbamide (PTC) in a dose-dependent manner (EC50 = 7.6 × 10−5). Dose-responsive
curves were also obtained for a few additional receptors and compounds with similar results
(Fig 3).

A comparative perspective: Bitter receptor genes in other Carnivora
Bitter receptor gene numbers for several species were available from public sources (dog, ferret,
giant panda, and polar bear; see Materials and Methods). We also extracted bitter receptor
gene information from the genome of two recently sequenced species from the order Carnivora
(walrus and seal) using amino acid sequences of intact bitter receptors from dogs and ferrets as
queries (N = 15 sequences from dog, N = 14 sequences from ferret). We found 5 and 4 intact
bitter receptor genes from walrus and seal, respectively, as well as 17 (walrus) and 11 (seal) pre-
sumably non-functional bitter receptor genes (Tables 1 & 2; S1 & S2 Datasets). This result is
consistent with our previous report [3] of reduced taste receptor function in other aquatic

Fig 1. Responses of feline bitter taste receptors to bitter compounds. HEK293 cells transiently transfected with one of the feline Tas2r bitter receptors
(Tas2r2, Tas2r4, Tas2r7, Tas2r12, Tas2r38, Tas2r46, or Tas2r67), with Gα16-gust44, were assayed for their responses to 25 bitter compounds. Black
traces, calciummobilization of seven feline bitter receptors to bitter compounds; grey traces, those of mock transfected cells used as control.

doi:10.1371/journal.pone.0139670.g001
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mammals. A phylogenetic tree constructed with all predicted intact Tas2rs from seven Carniv-
ora species (Fig 4, Table 2; see also below) shows a nearly one-to-one orthologous relationship
among Tas2rs. One exclusive plant-eating Carnivora species (Giant Panda, 16 intact Tas2rs)
has 1–4 more intact bitter receptors than does meat-eating species (cat, 12; polar bear, 13; fer-
ret, 14; dog 15).

Discussion
The goal of this study was to determine whether domestic cats, which are obligate carnivores,
have multiple fully functional bitter receptors based on their activity in cell-based assays. The
results confirmed that they do. Bitter receptor function in the cat exhibited similarities and
some differences with that in humans. For instance, the human TAS2R38 receptor responds to
a few thiourea compounds [26], including PTC and 6-propyl-2-thiouracil (PROP). The cat

Fig 2. Quantitative analysis of responses of feline bitter receptors to bitter compounds. HEK293 cells were transiently transfected with a feline bitter
receptor (Tas2r2, Tas2r4, Tas2r7, Tas2r12, Tas2r38, Tas2r46, or Tas2r67), with Gα16-gust44, and assayed for their responses to bitter compounds. Data
are expressed as mean ± SE percent change in fluorescence (ΔF, peak fluorescence–baseline fluorescence) compared with baseline fluorescence (F) from
three independent wells. Two-tailed Student’s t-tests were performed to determine when responses from Tas2r-transfected cells were significantly different
from that of mock-transfect cells. Only bitter compounds that elicited significant responses above mock-transfected cell baseline are shown in the Figure.

doi:10.1371/journal.pone.0139670.g002

Domestic Cats (Felis catus) Have Functional Bitter Receptor Genes

PLOS ONE | DOI:10.1371/journal.pone.0139670 October 21, 2015 4 / 12



Tas2r38 only responds to PTC but not PROP, at the concentrations tested. A similar observa-
tion was reported recently [9]. Likewise, human TAS2R46 is a broadly tuned receptor that
responds to a wide range of structurally diverse bitter compounds (e.g., angrographolide, chlor-
amphenicol, chloropheniramine, denatonium benzoate, Diphenidol, Picrotoxinin, yohimbine,
etc) [10], and the cat receptor was also similarly broadly tuned and responded to an overlap-
ping set of compounds (e.g., angrographolide, chloramphenicol, chloropheniramine, dipheni-
dol, limonin, phenanthroline). Moreover, the Tas2r2 gene is intact in cats (and all species
within Carnivora we surveyed), but it is a pseudogene in humans [27, 28].

The breadth of tuning properties of cat bitter receptors as described here are based on
responses to a small set of both naturally occurring and synthetic compounds. Also, some com-
pounds tested at higher concentration than we used may activate the receptor but were
untested in this study due to non-specific responses and solubility issues. Additional work with
a wider range of “bitter” compounds, especially those derived from animal products consumed
by cats, will surely reveal more interesting properties of these receptors. Moreover, we note that
the responses of the cat Tas2r2-transfected cells to bitter compounds appeared to have a higher
baseline than that of mock-transfected cells. Although we don’t know the reason, potential con-
stitutive activity of Tas2r2 may contribute to a higher baseline in Tas2r2-transfected cells.

Fig 3. Feline Tas2rs respond to bitter compounds in a dose-dependent fashion. HEK293 cells transiently transfected with feline Tas2rs with
Gα16-gust44 showed dose-dependent responses to bitter compounds. Mock-transfected cells were used as controls. The data were fit by a sigmoidal
function using GraphPad Prism 5.

doi:10.1371/journal.pone.0139670.g003
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To provide a comparative perspective on bitter taste receptors, we examined the number of
intact bitter receptor genes in species of the order Carnivora (Tables 1 and 2). This order con-
tains species that eat foods derived virtually exclusively from animals (obligate carnivores), eat
foods derived predominantly from animals (carnivores), eat foods derived from animals and
plants (omnivores), or only eat plant-based foods (herbivores). All species in this order appar-
ently arose from a meat-eating common ancestor about 60 million years ago [29]. If bitter
receptor function is strongly influenced by whether a species consumes plants, we would expect
that obligate carnivores should have fewer functional bitter receptors than do herbivores per-
haps through pseudogenization as happened for the sweet receptor. We found that the num-
bers among terrestrial Carnivora were roughly the same regardless of the amount of meat in
the species’ diets although the herbivorous giant panda did have 1–4 more intact bitter recep-
tors than meat eating carnivores (Table 1). Thus these comparative data do not provide strong
support for the hypothesis that an all-meat diet would result in reduced bitter receptor number
or function [6], However, due to the small number of species examined, they also do not refute
this hypothesis. More comparative data are needed to critically test it.

Consistent with our previous report of major taste loss in some aquatic mammals ([3]; see
also Tables 1 and 2) the two mainly water-dwelling Carnivora we examined, walrus and seal,
both of which are obligate carnivores, did have a smaller number of bitter receptors (5 and 4
respectively) than the terrestrial Carnivora we examined. However, due to the small set of spe-
cies available for our comparative analysis, we cannot conclude with confidence that mammals
that have become sea living consistently or universally loose bitter receptor number and/or
function. Nevertheless the consistency is striking. For example, in three separate lineages of
mammals that have returned to aquatic life (Cetacea [dolphin, whale]; Tethytheria [manatee]
and Pinnipedimorpha [walrus, seal]), all appear to have very low numbers of functional bitter
receptors ([3] and Table 1). Future work with more species is warranted to further clarify the
role of ecological niches (e.g., water-dwelling vs land-dwelling) in taste receptor evolution.

What factors could maintain bitter taste receptor function in terrestrial obligate carnivores?
First, it could be that even obligate carnivores such as cats are actually exposed to plant material

Table 1. Tas2r repertoires in seven species within the order Carnivora and other aquatic mammals.

Category Tas2r bitter receptor genes Diet type

Intact Partial Pseudo-genes Total

Terrestrial Carnivora

Domestic cat (Felis catus) 12 0 11 23 Obligate Carnivore [11, 12]

Domestic dog (Canis lupus familiaris) 15 0 8 23 Omnivore [12]

Ferret (Mustela putorius furo) 14 0 10 24 Obligate Carnivore [13]

Giant panda (Ailuropoda melanoleuca) 16 0 10 26 Herbivore [14]

Polar bear (Ursus maritimus) 13 0 11 24 Carnivore [15]

Aquatic Carnivora

Walrus (Odobenus rosmarus) 5 0 16 21 Obligate Carnivore [16]

Seal (Leptonychotes weddellii) 4 2 11 17 Obligate Carnivore [17]

Other aquatic mammals

Dolphin (Tursiops truncatus) 0 0 10 10 Obligate Carnivore [18]

Whale (Balaenoptera acutorostrata) 1 0 8 9 Obligate Carnivore [19]

Manatee (Trichechus manatus) 7 0 25 32 Herbivore [20]

Note: The numbers of Tas2r genes for the Dolphin, Whale and Manatee were obtained from Jiang et al. (dolphin) [3], Feng et al (whale) [21]., Zhu et al.

(whale) [22], Li and Zhang (manatee) [6].

doi:10.1371/journal.pone.0139670.t001
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through consumption of prey viscera that contains plant material consumed by the prey. There
are two arguments against this having an important role. First, plants eaten by prey may not be
bitter and highly toxic since the prey species consumed them themselves. However, some spe-
cies have evolved detoxification mechanisms enabling them to consume potentially toxic plants
(e.g., the koala [Phascolarctos cinereus] feeding on the foliage of eucalyptus species, which are
typically rather poisonous to most animal species) [30]. Second, the frequency that carnivores
actually consume plant material in prey viscera is unclear and it has been reported, at least for
wolves, that this plant-material is avoided [31].

Another possible reason for maintenance of bitter receptor number and function in cats
and perhaps other carnivores is that there are also bitter compounds in many non-plant prey
items in the carnivore diets (but see reference [5]). For example, domestic cats are known to
feed on animal products that are also potentially bitter and toxic such as bile acids, venom and
skin secretions from arthropods, reptiles and amphibians [32]. Thus our observations that bit-
ter receptors in cats and most likely other land-dwelling Carnivora are functional could be due
to selection to insure that consumption of these toxic substances is minimized.

A third reason why the number of bitter taste receptors may not be strongly influenced by
the amount of dietary plant material relates to the possible non-oral functions of these recep-
tors. Bitter receptors are found in cell types other than taste on the tongue. Neither the natural
ligands nor the functions of these receptors are fully known, but we suggest they may be impor-
tant in maintaining bitter receptor functionality in species that might not otherwise “need”

Table 2. Presence of Tas2r genes in seven species in the order Carnivora.

Tas2r Cat Dog Ferret Giant panda Polar bear Walrus Seal

Tas2r1 + + + + + ps ps

Tas2r2 + + + + + + +

Tas2r3 + + + + ps ps ps

Tas2r4 + ps + + + ps ps

Tas2r5 ps + + ps + ps —

Tas2r7 + + + + + + partial

Tas2r8 ps ps ps + + ps —

Tas2r9 + ps + + + ps +

Tas2r10 ps + + + + ps —

Tas2r12 + + + (122) + ps ps ps

Tas2r38 + + + + + ps +?

Tas2r39 ps + ps + + ps ps

Tas2r40 ps + ps + + +? ps

Tas2r41 ps + ps + ps ps partial

Tas2r42 + + + + + + ps

Tas2r43 + + + (19) + (66*) ps (20*) — —

Tas2r46 + — + (14) + (31) + ps +

Tas2r62 ps + (34) ps ps — + —

Tas2r67 + (18) + + ps — ps —

Note: Only Tas2rs with a predicted intact open reading frame in at least one species in Carnivora are listed. +, intact gene present; ps, predicted gene is

pseudogenized due to either open reading frame-shifting mutations or premature stop codons;—, Tas2r ortholog is not found in the genome database

from that species. Numbers in parentheses are those used in Li and Zhang [6];

*, nomenclature of predicted Tas2r in NCBI. The seal Tas2r38 (+?) has a longer N-terminal and a predicted octahelical transmembrane domain, so it is

uncertain of whether it is intact. For walrus, Tas2r40 (+?) lacks the prototypic seven-transmembrane helices for G-protein-coupled receptors and is thus

unlikely to be functional [23].

doi:10.1371/journal.pone.0139670.t002
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them to avoid plant-based or animal-based toxins. For instance, respiratory-expressed bitter
receptors are important for innate defense against bacterial infections [33–35].

Domestic cats have a reputation as picky eaters. Perhaps their apparently intact bitter sys-
tem provides some explanation for their dietary habits. While the cell-based assays used here
may not exactly recapitulate the native taste system, it allows investigators to gauge the
response of the cat to bitter chemicals, including items that are poisonous, without risk to the
animal. Commercial cat foods and veterinary medicines may contain bitter compounds that at

Fig 4. Phylogenetic tree of Tas2r repertoires of seven species in the order Carnivora.Only the predicted intact Tas2r receptors are included.
Sequences were either taken from Li and Zhang or obtained from reBLASTing genomes of these seven species. The tree was constructed by using the
maximum-likelihood method based on the matrix-based model of [24] implemented in Mega 6 [25]. The tree is drawn to scale, with branch lengths measured
in the number of substitutions per site.

doi:10.1371/journal.pone.0139670.g004
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least some cats find off-putting, and one way to predict their response in advance is through
use of these cell-based systems.

Materials and Methods

Feline Tas2r receptor constructs
The coding sequences of feline Tas2r receptors were amplified from feline genome DNA using
gene-specific primers (S1 Table). The coding sequences were inserted into an expression cas-
sette with the first 45 amino acid residues of rat somatostatin receptor 3 as the signal peptide at
the N-terminal and the herpes simplex virus glycoprotein D epitope at the C-terminal, follow-
ing previously established methods [36]. All constructs were verified by direct sequencing.

Chemicals
With the exception of acetylthiourea (Acros Organics), diphenidol hydrochloride (Reagent
World), and limonin (LKT Laboratories), all chemicals were purchased from Sigma-Aldrich.
For the catalog numbers and concentrations used in the assays, see S2 Table. Concentrations
were chosen according to Meyerhof et al [10] to ensure that there were no or little unspecific
responses distinguishable from that of Tas2r-transfected cells. As stated in Meyerhof et al.,
higher concentrations of bitter compounds could not be used because bitter compounds gener-
ated artificial calcium responses in the absence of transfected Tas2rs at high concentrations.

Functional assays of feline bitter taste receptors
Human embryonic kidney 293 (Peakrapid) cells were obtained from ATCC and cultured in
Opti-MEM supplemented with 5% fetal bovine serum. Cells were seeded in 96-well plate at a
density of 50,000 per well. The next day, cells were transiently transfected with a Tas2r con-
struct (0.1 μg/well) with a coupling chimeric G protein Gα16-gust44 (0.1 μg/well) using Lipo-
fectamine 2000 (0.5 μl/well). After 24 h, cells were washed once with Hanks’ balanced salt
solution (HBSS) and loaded with Fluo–4 for 1 h. After three washes with HBSS, cells were
assayed for their responses to bitter compounds using a FlexStation III. Relative fluorescence
units (excitation at 488 nm, emission at 525 nm, and cutoff at 515 nm) were read every 2 s after
addition of HBSS supplemented with 2× tastants. Calcium mobilization traces were recorded.

Data analysis
Calcium mobilization was quantified as described previously [37]. In short, changes in fluores-
cence (ΔF) were quantified as peak fluorescence minus the baseline level (F) and are expressed
as percent ΔF relative to F, averaged from triplicate studies. Calcium mobilization traces were
drawn using Excel, and bar graphs were generated using GraphPad Prism 5. Two-tailed Stu-
dent’s t-tests were performed for statistical analysis.

Genetic analysis of bitter taste receptor genes from selected species in
Carnivora
The protein sequences of dog and ferret Tas2rs obtained from Li and Zhang [6] were used to
query the domestic cat, seal, and walrus genomes. The retrieved sequences were analyzed for
open reading frame mutations. For the intact genes, the predicted protein sequences were fur-
ther examined for the presence of the seven-transmembrane helices using TMHMMmethods
(www.cbs.dtu.dk/services/TMHMM) [23]. The deduced amino acid sequences from cat, seal,
walrus, dog, ferret, giant panda and polar bear(S1 Dataset) were aligned using Clustal X imple-
mented in Mega 6 [25]. A phylogenetic tree among these receptors was then inferred using
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maximum likelihood implemented in Mega 6 [25]. All DNA sequences were provided in S2
Dataset.
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S1 Dataset. The predicted amino acid sequences of intact polar bear, feline, dog, ferret,
giant panda, walrus, and seal Tas2r genes.
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rus, and Weddell seal were presented in FASTA format.
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S1 Table. Primer sequences used to amplify cat Tas2rs for cloning.
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S2 Table. Responses of cat bitter taste receptors to 25 bitter compounds
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